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Symmetric matrix methods for Schrodinger eigenvectors 
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Physics Department, University of Reading, Whiteknights, Reading RG6 ZAF, U K  

Received 30 March 1990 

Abstract. The one-dimensional single-particle Schrodinger eigenvalue equation is represen- 
ted by a generalized matrix eigenvalue equation of the form 

A* = Ea* 

where A is a symmetric matrix, a is a symmetric positive-definite matrix and ‘4’ is a column 
vector. The local error in making the representation is proportional to S 4  where S is the 
step size. Several methods of solution which make use of the sparsity of the matrices are 
investigated. 

1. Introduction 

The determination of the eigenvalues and eigenfunctions of the single-particle 
Schrodinger equation is an  important aspect of quantum physics. Such solutions are 
often the starting point for many-body calculations and  there is considerable interest 
in the computational aspects of the solution [ 1-41, 

In situations of special symmetry the three-dimensional Schrodinger equation can 
be reduced to a one-dimensional (radial) equation and in this paper we restrict ourselves 
to such one-dimensional equations. There are, of course, situations in physics where 
the problem is inherently one-dimensional-polymers for example-and in such situ- 
ations the solutions of the one-dimensional single-particle Schrodinger equation would 
be the natural starting point for investigations of electron correlations. 

A typical requirement is for the eigenfunctions corresponding to the energy eigen- 
values in a certain range. If integrals over eigenfunctions are needed then it is convenient 
if these eigenfunctions are all evaluated at the same set of coordinate points. 

The ‘typical’ method of solution is a ‘shooting method’ based on the Numerov- 
Cooley algorithm or some modification of this [3 ,5 ,6] .  The method is to guess a value 
for an  energy eigenvalue, to integrate the equation outwards from the origin and  
inwards from ‘infinity’ and  to attempt to match the two solutions at some intermediate 
point. The degree of mismatch provides some estimate for the next ‘guess’ and  the 
procedure is iterated until the mismatch is small enough. 

Improved versions of this shooting method involve working with a phase function 
rather than with the wavefunction itself [7-91. A discussion of some of the numerical 
problems which can arise in this approach has been given by Pruess [21]. In such 
schemes one eigenvalue and  eigenfunction are evaluated at a time and  in many of the 
schemes the step-size is variable. This means that different eigenfunctions are generally 
determined at  different sets of coordinates and  so the evaluation of integrals involving 
the eigenfunctions is inconvenient. 

0305-4470/90/235479+ 13S03.50 0 1990 1OP Publishing Ltd 5479 
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We present a scheme, based on symmetric matrices, whereby all the eigenvalues 
in a certain energy range, together with their eigenfunctions, are determined simul- 
taneously, and in which the eigenfunctions are evaluated at a common set of coordin- 
ates. The idea for such a scheme was introduced by Cooney et a1 [ 1 1  but their method 
had a much poorer accuracy than the Numerov-Cooley algorithm. Our method is to 
replace the differential equation by a difference equation, as in the Numerov algorithm, 
with a fixed step size, and to write the set of difference equations as a single symmetric 
generalized matrix eigenvalue equation. There are many library subroutines for the 
numerical solution of such matrix eigenvalue equations. A brief introduction to our 
new method has been presented previously [ 101. 

The differential Schrodinger equation is replaced by a matrix equation 

A 9  = E a 9  ( 1 . 1 )  

where A is a symmetric matrix, a is a symmetric positive-definite matrix and 9 is a 
column vector. The local error in representing the differential equation by the difference 
equation is proportional to 64 where 6 is the step size. 

We investigate five schemes for the determination of a selection of the eigenvalues 
and eigenvectors of ( 1 . 1 ) .  Four of these schemes make use of the sparsity of the 
matrices; this is important since if high accuracy is required then N, the order of the 
matrices, may need to be very large and it may not be possible to store the complete 
matrices. The fifth scheme, which uses EISPACK subroutines [ l l ] ,  does not make use 
of the sparsity and is included simply to show the limitations of such schemes. 

2. The algorithm 

In dimensionless units the Schrodinger equation is 

9 ( x ) +  V ( x ) 9 ( x )  = E V ( x ) .  
d2 

dx2 
-- 

We want to transform this diferential eigenvalue equation into a diference equation. 
A simple procedure for doing this, first presented by Cooney et a1 [ 11, is to approximate 
the second derivative at a point x = x,  by 

d’ (*,+I +Yn-1-29,)  - 9 ( x , )  = s2 dx2 

where Pn = 9 ( x , )  and x , + ~  - x, = 6. 

A 9 = E 9  

The resulting equation can be put into matrix form 

(2.3) 
where A is an N x N symmetric matrix and 9 is a column vector. There are many 
standard library procedures for determining the eigenvalues and eigenvectors of this 
eigensystem. Unfortunately equation (2.3) is a poor representation of the original 
differential equation (2.1): the leading term in the local error relative to E 9 , ,  is 

s2 - q L 4 ’  

12 (2.4) 

where 9(4) denotes the fourth derivative. In order to produce accurate results 6 is 
required to be very small and hence, for a given x-range, the order of the matrix very 
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large: the size of the x-range is N6. An improvement on this simple algorithm is the 
Numerov-Cooley algorithm [5,6]. In this the difference equation representing the 
Schrodinger equation is 

- ( * n + l + * n - l - 2 * n )  

s2 
= ; ( E  - V n ) q n  + & ( E -  V n + l ) q n + l + A ( E -  Vn-1)qn-I (2.5) 

and the local error at x = x, is reduced to 

The matrix form of this equation is 

A 9  = E a 9  (2.7) 

where A and a are tridiagonal matrices. a is symmetric and positive-dejinite but the 
matrix A is asymmetric. Methods exist for the solution of this asymmetric generalized 
eigensystem, but they are not nearly as efficient as the methods available for the 
symmetric case. The reason is that for the asymmetric case there is no guarantee that 
a complete set of solutions to (2.7) exists whereas when A is symmetric and a is 
symmetric and positive-dejinite there is a complete set of eigensolutions. For a discussion 
see Wilkinson [22] or Dennery and Krzywicki [23]. We therefore seek a second-order 
difference equation representation of the Schrodinger equation with the same order 
of local error ( a4) as the Numerov-Cooley algorithm but which yields matrices A and 
a which are tridiagonal and symmetric and a positive-dejinite. 

The non-zero elements of the required matrices A and a are denoted by 

A n n  = An 

so that a section of the matrix equation looks like 

. . .  : : :  I[ $;;;I Bn-2 A,-l B,-1 
. . .  B,-l A, B, 
. . . . . .  B, A,,I 

. . . . . .  b,-2 a , - l  b,,-l 9,-1 

. . . . . .  b, a n , ,  bfl-I 

= E  . . .  b n - 1  an b n  . . .  I[ (2.9) 

The resulting difference equation is 

and we want to determine the coefficients so that the local error in the representation 
is as small as possible. 
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The method of selecting these coefficients is as follows: since we do not want the 
coefficients to depend on the unknown eigenvalue E, we replace the terms involving 
ET,, and so on, by using the exact Schrodinger equation (2.1). We should point out 
that this i s  a device solely for determining the coefficients and is not part of the method 
of solution. The resulting equation, which now involves second derivatives, is 

(Bn - 1  - bn-l Vn- 1 ) q n  - 1  + (An - an Vn )"n + (Bn - bnVn-1 )*,+I 

+ ( b n - l T ~ 2 ~ l + a n T y ' + b ~ q ~ 2 ~ l ) = 0 .  (2.11) 

We then demand that this equation be, at least to some order in 8, satisfied identically 
for an arbitrary *. The way that this is achieved is to express TnTl and q y i 1  in terms 
of a Taylor expansion about x = x,, and then to equate to zero the coefficients of as 
many derivatives as possible. For an alternative approach where the coefficients are 
chosen to depend on (the unknown) E see Ixaru and Rizea 131. The coefficients of 
the first six derivatives of ?(x) at x = x, are: 

0: I (Bn - 1 - bn - 1 Vn - 1 ) + (An - an Vn ) + ( Bn - bn V n +  1 )}  

1 :  a{(Bn - bnVn+l) - (Bn-1- bn-l Vn-1)) 

AII the odd coefficients, not just the ones shown here, can be made zero by the 
solution 

b, = b 

B,=B+b(V,,+,+V,,)  
(2.13) 

where B and b are constants, yet to be determined. Equating the zero and second-order 
coefficients to zero yields the relations 

U,, = - [ 2 b + s 2 ( B +  bV,)] 

A ,  = -[2b + 6'( B + bV, )] V, - ( B  + bV, ). 
(2.14) 

Using these results, the coefficient of the fourth derivative is 

12 

and this obviously cannot be made zero for all n. The best that we can do is to choose 

B = - b  V + -  ( -  'si> (2.15) 
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where is some ‘average’ potential. With this choice the fourth-order coefficient is 

64 
12 
- b( v, - V).  

The constant b is arbitrary; it simply sets the overall scaling. We choose b = 1/12 to 
give (approximately) the same scaling as in the Numerov-Cooley algorithm ( ( 2 . 9 ,  
(2.7)). With this choice the complete set of coefficients is 

1 
bn =- 

12 

2 ( 2 V + V n ( 8 - 6 2 ( V n - V ) ) )  
s 12 

A n = y +  

The leading term in the local error, relative to E q n  is 

64 s4 
- ( V ,  - V)YL4’+- qy’ 
144 240 

(2.16) 

(2.17) 

which is the same order as in the Numerov-Cooley algorithm. can be used to reduce 
further the local error. 

Equations (2.7), (2.8) and (2.16) almost completely determine the algorithm. The 
‘almost’ is necessary because we have not yet discussed boundary conditions. The 
difference equations (2.10) and (2.11) do not (necessarily) apply at the boundary values 
n = 1 and n = N. Hence the expressions for the coefficients (2.16) may not hold for 
these values. It turns out, however, that only the diagonal elements need to be modified. 

3. Boundary conditions 

We denote the left-hand and right-hand boundaries by x = XL and x = X,. The typical 
situation we have in mind is where the eigenfunctions q v ( x )  are required on the 
positive axis 0 < x <a, the values on the negative axis being determined by symmetry 
or where, as in the radial equation of the spherically symmetric three-dimensional 
Schrodinger equation, the negative axis does not exist. The typical boundaries are 
therefore XL = 0 and X ,  being some approximation to infinity. 

The boundary conditions are assumed to have the form 

V ( x )  = 0 

W”(x)  = cy\II(x) 
or 

at x = XL or X,,  where a is a constant. 
Consider first the boundary condition \II(XL) = 0. In this case the first point x i  is 

taken to be one step in from the boundary: x i  = XL+ 6. The difference equation for 
n = 1 is (2.10) with the terms V,, omitted. However, since these terms are identically 
zero we can formally leave them in the equation. The analysis leading to (2.16) can 
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then be applied exactly, so this equation also applies to the boundary values n = 1. 
Similarly (2.16) applies to n = N if the right-hand boundary condition is q ( X R )  = O .  
The expression (2.17) for the local error also applies at n = 1 and n = N for these 
boundary conditions. 

If the right-hand boundary condition is Y'"(XR) = a'U(X,) for some constant Q 

(which may be zero), then x, is taken to occur at the boundary, x, = XR. The relevant 
difference equations are (2.10) and (2.11) but with the terms q,+, omitted. The analysis 
proceeds as before except that the Taylor expansion of Y,-, now incorporates the 
boundary condition: 

(3.2) 

We then equate to zero the coefficients of the various derivatives (except '4':)) as 
before. The result is that the off-diagonal terms B N  and 6, are as given by (2.16) but 
that the diagonal terms are 

Similarly if the left-hand boundary condition is '@''(XL) = pU(XL), x, is taken to be 
XL and the expressions for AI  and a ,  are 

5 s2 
12 24 

a,  = - - - ( V, - V) 

(; (vi1; VI), A,  = a ,  Vi + ( 1  + p 8 )  7 -- 
(3.4) 

The values of the off-diagonal terms B ,  and 6, are correctly predicted by (2.16). 
However, for these boundary conditions the local errors at the boundary are, in general, 
much larger. The leading terms in the local errors at n = 1 and n = N for these boundary 
conditions are respectively: 

In two important cases the situation can be retrieved: in the case XL = 0 and when the 
required eigenfunctions are even the third-order derivative Yi3' is zero and so the local 
error is proportional to S4 as before. If  X, is in the asymptotic region of the eigenfunc- 
tions then the purpose of the boundary condition is simply to exclude the exponentially 
growing term, and the solution is not sensitive to the precise form of the boundary 
condition. So, although the local error is the large value quoted above, this is not 
significant to the resulting eigenvalues and eigenfunctions. 

In the typical case the left-hand boundary condition will be either Y = 0 for odd 
eigenfunctions or Y' ' = 0 for even eigenfunctions; the right-hand boundary condition 
will be v'"(XR) = -[ v(xR)-E]"'vR(x) where E is some estimate of the energy 
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eigenvalue. In most cases, the results are not very sensitive to the value of E and since 
our aim is to determine all the eigenvalues and eigenvectors in a certain energy range, 
a value near the top of the range is a suitable choice for E. 

4. Generalized eigenvalue problem 

The determination of the eigenvalues and eigenvectors of the one-dimensional 
Schrodinger equation has been reduced to the solution of the symmetric generalized 
eigenvalue problem : 

A 9  = E a 9  (4.1) 

where A and a are tridiagonal symmetric N x N matrices. If we want very high accuracy 
or very highly excited eigenvectors (or both) then N may be required to have a large 
value, say 10000. 

As we have emphasized already, we are guaranteed a complete set of eigensolutions 
if, in addition, a is positive-dejnite and most library software subroutines for the 
solution of such eigensystems make this additional assumption. In the present case a 
does not turn out automatically to be positive-definite but we can choose it to be so 
by restricting the allowed range of the parameter E In order to ensure a is positive- 
definite it is sufficient to require that each diagonal element a ,  be greater or equal to 
1/6. The corresponding restriction on depends on the particular boundary conditions 
in effect (see (2.16), (3.3) and (3.4)). For vanishing eigenfunctions at both ends of the 
range V must satisfy 

- 8 v> vmax-- 
6* (4.2) 

where V,,, is the largest value of V,. This still leaves some freedom in the choice of 
v so as to reduce the local error. From now on we assume that a has been chosen to 
be positive-definite. 

The general strategy for the solution of this generalized eigenvalue problem is as 
follows. 

(1) Determine the Cholesky factors L and LT of a such that 

U = L L ~  (4.3) 

where the superscript T indicates the transpose and L is lower triangular. The great 
advantage of Cholesky factorization over most other factorization schemes is that the 
Cholesky factors perserve the sparsity of the matrix a and in the present case L has 
only a non-zero diagonal and one non-zero sub-diagonal, the remaining terms being 
zero. 

(2) Transform the equation to a conventional eigenvalue problem 

A ~ x  = EX (4.4) 

Ac = L-'AL-T (4.5) 

where A c ,  the Cholesky transform of A, is 

and the eigenvectors x are related to the original eigenvectors 9 by 

x = L T 9 .  (4.6) 
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(3 )  Solve the conventional eigenvalue problem (3.4) for the eigenvalues E ,  in the 
required range and their corresponding eigenvectors x, by some method which exploits 
the sparsity of A and L. 

(4) Obtain the eigenvectors Y, from x, by solving (4.6). 
It should be emphasized here that although A and L are sparse matrices Ac is 

definitely not and it is important that Ac is not used explicitly. We explain below how 
this can be achieved. 

The leading contenders for the solution of large sparse matrix eigenvalue problems 
are methods based on the Lanczos algorithm and those based on subspace iteration [ 121. 

We have investigated two Lanczos schemes. The first was devised by Reid and 
Parlett [13] and implemented by Reid as subroutine E A i s  in the Harwell Subroutine 
Library (14). This is based on the simple Lanczos algorithm but has a rather elaborate 
scheme for determining when the algorithm has converged. The second was devised 
by Scott and Parlett [15]  and implemented by Scott as subroutine SILASO [16]. This 
is the state of the  art in Lanczos procedures and is a block (or band) Lanczos scheme 
with selective orthogonalization. 

In E A I ~  the matrix A, is required only in a user-written subroutine which takes 
two vectors U and U as inputs and produces as output 

U = U + Ac U. (4.7) 

If A ,  is used directly then, since it is a dense matrix, the operation (4.7) requires 
additions and multiplications of order N 2 .  An alternative scheme to calculate A,u is: 

(i) first, solve U = ~~p for p 
(ii) second, calculate q = A p  
(iii) finally, solve q = Lr for r which is the required result. 
This apparently convoluted scheme in fact requires only of the order of 7N additions 

and multiplications and so takes roughly a fraction 7/ N of the time of the direct method. 
SILASO requires a user-written subroutine which solves the equation Acu = U for U. 

Again it is advantageous not to use Ac directly. The procedure is: 
(i) first, calculate p = Lv 
(ii) second, solve Aq = p  for q 
(iii) finally, calculate U = LTq as the required result. 

This is much quicker than solving the equation directly because in (i i)  the tridiagonal 
nature of A can be exploited. 

The subspace iteration procedure we have used is the NAG [17] subroutine FOZFJF 

which is based on the SIMITZ algorithm of Nikolai [ 181 which, in turn, is based on the 
Algol procedure RITZIT of Rutishauser [ 191. This does not require the explicit factoriz- 
ation of the matrix a. Two user-written subroutines are required: one forms the ' a  
inner product' uTav of two vectors U and U and the other solves the equation Au = v 
for U. Both of these subroutines can take full advantage of the simple structures of A 
and a. 

We have included for comparison an investigation of the recommended EISPACK 

procedure for the generalized eigenvalue problem. This uses the EISPACK routines (in 

procedures take no account of sparsity of the matrices A and a and the matrix A ,  is 
explicitly determined (by REDUC) and so we would not expect them to be very efficient 
for large N. 

The final scheme we have tested was suggested by one of the referees of this paper. 
This involves modifications to two of the E I S P A C K  subroutines, B I S E C T  and T I N V I T .  

this order) REDUC,  TREDI ,  BISECT, TINVIT, TRBAKl  and finally REBAK ( 1 1 ) .  These 
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BISECT uses Sturm sequences and bisection applied to (in our notation) ( A  - E 1) in 
order to determine the eigenvalues in a certain interval; T I N V I T  applies inverse iteration 
to ( A  - E l ) +  to determine the corresponding eigenvectors. Both of the procedures 
can, since A and a are symmetric and tridiagonal and a is positive-definite, be directly 
applied to the generalized eigenvalue system ( A  - E a ) .  The necessary modifications to 
BISECT and TINVIT are relatively simple and eliminate the need for the subroutines 
REDUC, TREDi, T R B A K i  and REBAK. The storage requirements are also greatly reduced 
since the modified procedures only require the storage of two symmetric tridiagonal 
matrices. In the numerical tests this scheme is designated MOD-EIS (for modified 
EISPACK).  

5. Numerical tests 

In order to test these five procedures we wanted examples where the eigenvalues and 
eigenvectors are known exactly, we chose the radial equation of the hydrogen atom 
and the one-dimensional harmonic oscillator. In dimensionless form the Schrodinger 
equation for the one-dimensional harmonic oscillator is 

dZ 
dx2 ' P + x 2 ' P =  EY (5.1) -- 

and the exact eigenvalues and (unnormalized) eigenvectors are 

E , = ( 2 v + l )  
'u,(x) = e x p ( - x ' / 2 ) ~ , ( x )  (5.2) 

where H,(x)  is a Hermite polynomial [20]. The radial Schrodinger equation for the 
hydrogen atom, again in dimensionless units, is 

d2 / ( t + l )  2 
- - R( r )  + (7 - ;) R ( r )  = E R (  r). d r2  

The exact eigenvalues and (unnormalized) eigenvectors are 

1 
Ev/ = -- 

Y 2  

(5.3) 

(5.4) 
Rv8(r) = r'+l exp(- r /v)~t '_ : '_ , (2r /v)  

where L",x) is a generalized Laguerre polynomial [20]. 
These two cases represent very different problems. The harmonic oscillator is the 

'ideal problem'. The required step size 6 and the required box size N6 vary only slowly 
with U :  

6 a 

N6 z y ' / '  

where I/ is the quantum number of the largest required eigenvalue. 

mately independent of v whereas the required box size is 
In contrast, the hydrogen atom is far from ideal, the required step size is approxi- 

N6 = v 2  

where again v is the quantum number of the largest required eigenvalue. This means 
that for a given accuracy the matrix order is N = v for the harmonic oscillator and is 
N v 2  for the hydrogen atom. 
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Table 1. Harmonic oscillator states Y = 1,3,5,7,9, 11, 13, 15. 

c PU 

Software Number of Spacing R M S  eigenfunction time 
routine points 8 error ( S )  

N A G  100 8.0 x lo- '  4.1 x 
SILASO 100 8.0 x 4.1 x 1 0 - ~  
HARWELL 100 8.0 x l o - *  4.1 x 1 0 - ~  
MOD-EIS 100 8.0 x l o - *  3.7 x 1 0 - ~  

N A G  400 2.0 x lo-' 7.7 x 
SILASO 400 2.0 x 7 . 9 ~  
HARWELL 400 2.0 x 7.7 x 
MOD-EIS  400 2.0 x lo- '  7.7 x 
EISPACK 400 2.0 x 7.9 x 

NAG 1300 6.9 x lo-' 2.5 x 
SI LASO 1300 6.9 x lo- '  6.1 x l o - *  
HARWELL 1300 6.9 x io- '  2.5 x 
MOD-EIS 1300 6.9 x io- '  2.3 x 

El SPAC K 100 8.0 x 4.1 x lo-' 

0.65 
1.22 
0.30 
0.12 
1.27 

2.52 
3.54 
3.44 
0.40 

96.0 

11.1 
13.3 
34.9 

1.38 

NAG 4000 2.5 x io-) 3.8 x 10-I" 35.1 
SILASO 4000 2.5 x lo-' 4.9 x 1 0 P  33.2 
MOD-EIS  4000 2.5 x i o - )  4.7 x 10-10 4.24 

N A G  7000 1 . 4 ~  1 0 - ~  4.1 x l o - ' '  66.4 
MOD-EIS  7000 1 . 4 ~  io- '  3.6 x lo-'' 7.58 

MOD-EIS  11 000 1.3 x io- '  1.5 x lo- ' '  11.8 

For the harmonic oscillator the two tests for which the results are reported here are: 
(i) the determination of the odd eigenfunctions in the range 0-32 
(ii) the determination of the odd eigenfunctions in the range 32-64. 
Each test has been performed for a range of required accuracies in the calculated 

eigenvectors. For the hydrogen atom we present the results for the e = 1 eigenfunctions 
in energy range -0.051 to -0.014 ( v  = 5-8). 

Tables 1, 2 and 3 show the results obtained from these five routines for a range of 
array sizes N .  The results were obtained using double-precision arithmetic on an 
Amdahl 5870 using a virtual machine size of 4 Mbytes. All five routines could be used 
for N d 400 but for N 3 7000 only the NAG and MOD-EIS  routines were successful. 
With a larger machine size the NAG routine has been used successfully with N = 20 000. 
There was some problem with the accuracy in SILASO; in the harmonic oscillator 
examples with N = 4000 the tables show that the NAG and MOD-EIS  routines produced 
results which were two orders of magnitude more accurate. 

6. Conclusions 

We have demonstrated that symmetric matrix methods can be used with advantage to 
determine groups of eigenvalues and eigenfunctions of the one-dimensional Schrodin- 
ger equation. Of the particular software packages we have tested, the NAG routine 
FOZFJF presented the least difficulty and was the quickest. However even this could 
not compete in speed with the modified E I S P A C K  subroutines M O D - E I S .  The main 
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Table 2. Harmonic oscillator states v = 17, 19, 21, 23, 25, 27, 29, 31. 

c PU 
Software Number of Spacing R M S  eigenfunction time 
routine points s error ( 5 )  

NAG 100 1.0 x lo-’ 8.4 x io-’ 

MOD- E IS 100 1.ox lo-’  8.0 x io-’ 

N A G  400 2.5 x lo-’ 3.5 x 
SILASO 400 2.5 x 3.5 x lo-’ 
HARWELL 400 2.5 x lo-* 3.5 x 
MOD-EIS  400 2.5 x lo-’ 3.4 x 1 0 - ~  
El  SPAC K 400 2.5 x 3.6 x 

NAG 1300 8.5 x io-’ 4.2 x 1 0 - ~  
SILASO 1300 8.5 x io-) 4.5 x 
H A R W E L L  1300 8.5 x IO-) 4.2 x io-’ 
MOD-EIS 1300 8.5 x io-’ 4.0 x io-’ 

N A G  4000 2.9 x 1 0 - ~  5 . 6 ~  
SILASO 4000 2.9 x io-’ 1.2 x 
MOD-EIS 4000 2.9 x 1 0 - ~  5.5 x 

SILASO 100 1 .ox  lo-’ 8 . 4 ~  lo-’ 
HARWELL 100 1.ox 10-L 8.4 x lo-’ 

EISPACK 100 1.ox lo-’ 8.4 x IO-’ 

0.71 
2.21 
0.3 1 
0.11 
1.27 

2.66 
3.96 
3.54 
0.38 

99.9 

10.3 
13.6 
35.8 

1.29 

32.1 
39.8 
4.09 

N A G  7000 1.7 x io-’ 7.1 x lo-’’ 65.0 
MOD-EIS  7000 1.7 x io-’ 7.4 x 10-l0 7.26 

MOD-EIS  11 000 1.1 x 1 0 - ~  2.9 x lo-’’ 11.5 

Table 3. Hydrogen radial eigenfunctions P =  1; v = 5, 6, 7, 8. 

C P U  

Software Number of Spacing R M S  eigenfunction time 
routine points s error ( S I  

Y A G  

SILASO 

H A R W E L L  

MOD-EIS 
EISPACK 

NAG 

SI LASO 

H A R W E L L  

MOD-EIS 

N A G  

SILASO 

MOD-EIS  

N A G  

MOD-EIS 

M O D - E I S  

400 
400 
400 
400 
400 

1300 
1300 
1300 
1300 

4000 
4000 
4000 

7000 
7000 

1 1  000 

5.0 x lo-’  7.5 x 
5.0 x lo-’ 7.6 x io-’ 

5.ox lo-’  7.6 x 10-3 
5.ox 10-1 7.6 x 10-3 

1.9 x lo-’ 4.6 x 1 0 - ~  
1.9 x lo-’ 4.6 x 1 0 - ~  
1.9 x lo-’ 4.6 x 10-4 
1 . 9 ~  lo-’ 4.6 x 10-4 

6.9 x lo-’ 2.3 x 10-5 
6.9 x lo-’ 

4.3 x lo-‘ 5.5 x 
4.3 x lo-’ 5 .5  x 

2.7 x lo-’ 1 .5x 

5.0 x lo-’  7 . 6 ~  lo-’ 

2.2 x lo-‘ 
2.3 x lo-’ 6.9 x lo-‘ 

1.24 
2.33 
3.10 
0.21 

94.7 

4.23 
6.69 

0.68 
29.1 

18.2 
21.9 

2.18 

32.2 
3.72 

5.95 
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difficulty with the Harwell routine E A I ~  is that it requires a huge amount (a N 2 )  of 
secondary (disc or tape) storage. In  our system the secondary storage is disc and  it 
was very easy to exceed our disc-space allocation. For example, with N = 10 000 and 
using 8-byte (double-precision) floating point numbers, EA15 requires 800 Mbytes of 
disc-space! Both the Harwell subroutine E A I ~  and  Scott's SILASO required more main 
memory space than the NAG routine. In a particular configuration with 4 Mbytes of 
main memory, the largest matrix sizes that we could accommodate were: 

EA15. . . N = 6000( 1300) 

SILASO . . . N = 4000 

N A G .  . . N = 7000 

MOD-EIS . . . N = 11 000 

EISPACK . . . N = 425. 

For ~ ~ 1 5 ,  N = 6000 is the largest array size for which the program will start in this 
configuration. However, the program runs out of secondary (disc) storage. With a 
secondary disc size of 25 Mbytes the largest N was 1300. 

The modified EISPACK procedure MOD-EIS is small enough to be used on a PC and 
is particularly suitable for student projects. The original EISPACK procedure is clearly 
not suitable for large arrays. 
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